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“This paper proposes a background image estimation
method for background subtraction under changing
*jllumination. In our method. a background image is
generated as a weighted linear combination of the
 prepared background images. The weights change slowly
as time advances. We therefore adopt the sequential
“Monte-Carlo method to track the weights. and
background images are generated. A generated image in
“which area having pixel value equal to that of the input
image is the largest is selected as the background image
-under the illumination. In the experiments. background
-estimation and subtraction were carried out under
+ changing illumination conditions: i.e., geometrical setup.
" brightness, and color. The results show that background
-images are correctly estimated even if 80% of the area of
- the input image is occupied by a foreground object.
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1. Introduction

Background subtraction is a simple and effective
- technique for real time detection of a foreground object
and is used for many applications, such as video
surveillance systems. This technique adapts well to
Systems whose camera position and viewing angle are
fixed. A background image is prepared in advance and
_ Sl}btracted from an input image. By evaluating the
differences between the two images. objects in the
foreground can be detected.

. He're, let us consider the situation where the
illumination condition (e.g. geometrical setup. brightness.
gnd. color) is changing. The appearance of the background
I8 influenced by the illumination condition. and the
ba‘?kground image changes with illumination variation.
Usmg the background subtraction technique in that
flltuat.lon.v\'ould require a background image for each
lumination condition. However. it is infeasible to collect
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all background images under all possible illumination
conditions.

One approach to overcoming this problem is
background modeling. In this method. values invariable to
illumination change are used. Recently. this method is
becoming available even for non-stationary background
[1-3]. However, most of the algorithms are not simple.
and do not deal with illumination color change.

A second approach is to update the background image.
Using this approach to track foreground objects requires
accurate real-time estimation of background images.
Updating methods are based on temporal blending. A new
background image is generated as a weighted linear
combination of the last background image and a new
input image [6,7]. This technique can adapt to
illumination change quicklyv. However, foreground
objects on an input image become part of the updated
background image. and it causes some errors. Moreover.
the continuous illumination change also causes
continuous errors.

A third approach is to estimate background image by
projecting the input image onto an eigen-space [8]. The
eigen-space is calculated from a set of background images
taken under wvarious illumination conditions. The
background image for each input image is generated by
projecting the input image onto the eigen-space [9].
However. when the area of foreground objects on an input
image is large (e.g.. when some people are around the
camera), this method does not work well.

This paper proposes a novel approach in which we
generate background images as weighted linear
combinations of prepared background images and select
one in which area having pixel value equal to that of the
input image is the largest. The number of possible
combinations of weights is huge and the weights change
slowly as time advances. We therefore adopt the
sequential Monte-Carlo method [10] to track the weights.
This method is based on a probabilistic framework and
enables us to reduce the computation. It has often been
used for robust tracking of an agile object. Experiments
show that our method works well even if foreground
objects occupy a large area of the input image.




2. Background Estimation under Changing
Illumination

In the proposed method. a background image for each
illumination condition is generated as a weighted linear
combination of prepared background images captured
under sparsely sampled illumination conditions. Let us
agree to the following three assumptions.

- Camera position and viewing angle are fixed.

- Exposure parameters are adjusted to avoid camera

saturation.

- Auto correction functions (e. 2. gain control, and white

balance control) are turned off.
Determining the weights of the prepared images means
tracking illumination variation. To track the weights, we
adopt the sequential Monte-Carlo method [10]. which is
reviewed in Sec. 2.1. The method for determining the
weights is presented in Sec. 2.2. In developing the method
and in the experiments, omni-directional images [11]
were used. but the proposed method is available for other

types. '

2.1 Sequential Monte-Carlo Method

The problem of tracking states of an object can be
formulated in a probabilistic framework by representing
tracking as a process of conditional probability density
propagation. Let the state of the object at time ¢ be X, .
the observation result from a sensor at time ¢ be S, . and
the observation sequence from time 1 to s be
St ={S1,-.8;} . Let the prior probability density of
states at time r after observation sequence S,_; be
pP(X; | 8i-1), and the likelihood 7; of getting observation
S, if object is in state X; be p(S,|X,). Then the

Fig. 1. Diagram of the sequential Monte-Carlo method.

N

posterior probability density of states at time s after
observation sequence S, is calculated by the Baysian rule
as

p(X; | 8) = ki p(S; | X, (X, | Si-1). (1)

where &, is a normalization constant. If the state
transition probability p(X, | X,—;) is known and the
Markov property is satisfied, then the prior probability
density can be calculated as
PO Sim) = [p(X0 | Xi)p(Ki | Si)dXo . (2)

The sequential Monte-Carlo method samples the state
space with N points at time ¢ ; S, ={si1..S; N} .
calculates the probability density p(X; | Sy) of the sample
point by Eqs. (1) and (2). and decides new N sample
points using the probability density and state transition
probability as follows (F ig. 1):

Step 1. Weight each sampled state with a value
coresponding  to  their relative likelihood.
i ={m1.-,mn} . The n th likelihood 7, is
calculated by comparing the observation result S,
with a known observation model of the object. This
weighted set of samples  represents  the
approximation of the posterior at time ¢ .

Step 2. Select each sample of S, , s,, Nz, , times,
and then obtain a new set of samples
S = {Srs11. . Sran) Some elements with
relatively low weight may not be chosen at all.

Step 3. Shift sample S, according to the state
transition probability p(s,., [Si0) = p(X; | X;1) s
and then obtain a set of samples at time r+1 .
Sy = {Sl+1.1-’“-st+l_N} .

E—x)

St = {sti,s0n) 1

1 L
Seelk = {Sra1k, - LSk}

Sequential
Monte-Carlo Method H H . =

8 ={s.1.,s.)} ﬁ
Sk = {5.}1 ~"‘~-‘:L./<}

Fig. 2. Diagram of background image estimation.




2.2 Background Estimation

Figure 2 is a diagram of the proposed method. First,
background images under sparsely sampled illumination
conditions are .captured and stored. Let the stored
background images be " (k=1:--,L), the set of weight
vectors at time + be S, = {s,,---.s; 5}, and the weight
vector be s;, = (s,l,,, s,L ») . Then N background
images are generated using H and s;, . The n th
generated background image at time ¢ is defined as

L
-~ k k
H , = kz;sl,nH :

Concerning the background area, a correct background
image is the same as the input image. Then. we select an
image from the background images based on the idea that
the area on an estimated image, whose pixel value is
equal to input image, becomes largest when the estimated
image is correct. Likelihood 7z,, of a generated
background image H,,, is defined as

Tin =kn Z“. Zx Slixy = ;{\\) s

where &, is a normalization constant, ix, and hy, are
the pixel value of an input image I, and an estimated

3)

(4)

background image H, , at (x.1). Let the threshold be p,

and the function f(ix , - IL,_\-) in Eq. (4) is defined as

~ ~ 2
f(i.\‘.‘\' - h.\:_y) = (p—| I,y — h.\‘.y b}
when | iy, — }TX,,- I<p, (5a)

Sy - }7\'.\‘) =0 when |iy, - I;.\',)‘ >p. (5b)

The generated image whose likelihood 7, , is maximum
is selected as the background image at time ¢ .

The set of weight vectors at time 7+1 is generated
from the set of weight vectors at time ¢ as follows

1) Select a weight vector s;, at the probability
proportional to its likelihood 7, ,, .

2) Shift the s,, by the dynamic model, and let it be a
weight vector at time ¢ +1.

3) Repeatl)and 2) N times.

The set of weight vectors at time 0 is generated
randomly.

3. Experiments

We conducted experiments to show that our method
works well even if a large area of the input image is
occupied by foreground object. Images were captured in a
room environment with a color omni-directional camera
consisting of a hyperbolic mirror mounted above the
camera lens [11]. This camera provides a 360-degree field
of view. To change the illumination condition, we used
three lights. a. b, ¢ (a: fluorescent lamp: b. c: incandescent

(®)

(© (d)

Fig. 3. Prepared background images.

Four images captured under different illumination
conditions are used for image synthesizing. (a)
Fluorescent lamp, (b) incandescent lamp on the right
wall, (c) incandescent lamp on the left wall, and (d) all
lamps.
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Fig. 4. Examples of input images
~ The percentage of foreground area is 20% (left). 50%
(center), and 80% (right)

lamps). The color and brightness of the background was
changed by changing the combinations of lamp brightness.

As background images for generating new background
images, four images were collected when one of the
lamps was on or all lamps were on (Fig. 3). Next. 150
images were collected under changing combinations of
lamp brightness. To increase the area of a foreground
object, part of the image was artificially modified to
white. And these images were used as input images.
Figure 4 shows three examples from 150 images. The
percentages of foreground area are around 20. 50, and
80%. The proposed method is implemented on Pentium
IV 1.8 GHz PC, and it runs at almost 3 frames/sec when
100 samples per time step (N = 100 ) are used on 320x240
images.




(a)

) o

Fig. S. Results for the proposed method. Fig. 6. Results for the conventional method.
(a) Estimated background image. (b) Detected image (E}) Estimated background image. (b) Detected image
difference. difference.

By our method, the background images in Fig. 4 were

estimated as shown in Fig. 5(a) and subtraction images 0.16
became as shown in Fig. 5(b). In Fig. 5(b), the fan-shaped . —— proposed method B
area is the artificially modified area and the small area £ S L a
above it is the foreground object, in this case, a person. o 012 ' ---B- conventional method '
From the subtraction images, it may be said that § o
background images are correctly estimated for all cases. % oo0s |

By the conventional method based on linear projection =
onto eigen-space [1]. the background images in Fig. 4 § ',"3
were estimated as shown in Fig. 6(a) and subtraction g 00471 =
images became as shown in Fig. 6(b). The conventional §
method fails to estimate background when foreground 0 ey 4o

size is large (50%, 80%). 0 2 0 60 80

Figure 7 shows the root mean square error (RMSE)
between the input image and the estimated background
image at the background area. The RMSE of the proposed
method is small and almost constant. On the other hand, Fig. 7. Evaluation of estimated images.
the RMSE of the conventional method becomes large Straight line: the proposed method, dash line: the
when the foreground area is over 40%. ‘

Next, the person’s area on each image was extracted
by hand (Fig. 8), and true-positive and false-positive rate
of person detection were calculated. As shown in Fig. 9.
the false-positive rate for our method does not vary so
much and seems to be little influenced by foreground area.
On the other hand, the values for the conventional method
become large when foreground ratio is over 40%.

These results show that the proposed method works
well even if the foreground area is over 50% of the input
image.

Foreground Ratio [%]

conventional method.

4. Conclusion

This paper proposed a novel method to estimate a (a) (b) ©)
background image under changing illumination. A
background image is generated as a weighted linear
combination of background images collected at dispersed
points in the illumination space. The weight vector used
for estimation is determined by the sequential Monte-

Fig. 8. Extraction of foreground object.
(a) A part of input image. (b) experimental result.
(c) extracted by hand.
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Carlo method. Experiments were conducted in a room
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Fig. 9. Evaluation of person detection
lamps. The experiment shows that background images are images of an object under all possible lighting conditions?
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